If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+50t-20=0
a = 5; b = 50; c = -20;
Δ = b2-4ac
Δ = 502-4·5·(-20)
Δ = 2900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2900}=\sqrt{100*29}=\sqrt{100}*\sqrt{29}=10\sqrt{29}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{29}}{2*5}=\frac{-50-10\sqrt{29}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{29}}{2*5}=\frac{-50+10\sqrt{29}}{10} $
| 13r-8=-45 | | 1.54x+0.35(11-x)=8.61 | | x(1.18x)=168 | | 9(3x–1)=-4+49 | | 4x+4=4x+5 | | F(x)=x^-5x+2x=3 | | x2+7x+3=0 | | 16.8-w=6w | | 12x-20=16x+4 | | F(x)=x^-5x^+2x=3 | | -3t^2+8t+12=0 | | 9t2+6t+1=0 | | 1.2x-x=12350 | | F(x)=5x^+2x=3 | | 0=(x^2)+(0.32x)-0.84 | | 6x+4=5x-8-13x | | 4/5w+13=25 | | 4z-8+1z=-13 | | 2(2x+5)=6x+9-2x+1 | | x/11=257 | | 4x=90−6x | | 9+6j=6 | | b/4-8=-13 | | 0.2x+0.75=0.5 | | 9e-16=29 | | 8x^2+24x+36=0 | | 2x+50=10x+18 | | y+9y+18y=0 | | 5/6x-1/9x=-102 | | 4z-8+1z=13 | | 35/4=c-8/2 | | 4.8*x=23.04 |